jueves, 9 de octubre de 2008

TIPOS DE DISCOS DUROS






Discos Duros IDE

Son discos duros cuya electrónica de manejo está incorporada al propio disco, por lo que son los más económicos. El tiempo medio de acceso a la información puede llegar a 10 milisegundos (mseg). Su velocidad de transferencia secuencial de información puede alcanzar hasta 3 Mbytes por segundo (Mbps) bajo la especificación estándar y hasta 11 Mbps bajo la especificación mejorada (Enhanced IDE / EIDE). Su capacidad de almacenamiento en discos modernos alcanza hasta 8 Gbytes). Los controladores IDE pueden manejar hasta 2 discos duros en la versión estándar y hasta 4 discos en la versión mejorada EIDE.


















Discos Duros SCSI


Son discos duros de gran capacidad de almacenamiento (desde 5 Gbyte hasta 23 Gbytes). Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 mseg y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2).
Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que los vuelve más rápidos.

En los últimos años han empezado a desarrollarse nuevas tecnologías de discos duros que permiten superar las limitaciones de capacidad de transferencia de información de los discos IDE y SCSI, y que incrementan la capacidad total de almacenamiento. Estas nuevas tecnologías están siendo utilizadas inicialmente en sistemas RISC, minicomputadores y main frames, pero se espera su próxima introducción en servidores tipo PC. La industria de la computación no ha tomado aún partido por ninguna de esas tecnologías, pero las más destacadas son: Ultra-SCSI, Ultra-SCSI-2, Serial Storage Architecture y Fibre-Channel.

*Ultra-SCSI y Ultra-SCSI-2
También se las conoce como tecnologías FAST20, siendo consideradas por los expertos como un paso intermedio hacia las interfaces seriales. Ultra-SCSI y Ultra-SCSI-2 representan la última mejora de la tecnología SCSI, que aprovecha las grandes capacidades de los buses locales. Ultra-SCSI y Ultra-SCSI-2 implementan el nuevo protocolo SCSI-3, permitiendo un incremento en la velocidad de transferencia de información hasta 40 MBps para conexiones de 16 bits y hasta 80 Mbps para conexiones de 32 bits. Ultra-SCSI y Ultra-SCSI-2 siguen siendo implementaciones paralelas en las que se ha duplicado la velocidad del reloj del bus, pudiendo coexistir con dispositivos SCSI de tecnologías anteriores, pero por eficiencia es preferible que esos otros dispositivos se conecten a adaptadores independientes.


















*Serial Storage Architecture
La Arquitectura de Almacenamiento Serial (Serial Storage Architecture / SSA), desarrollada por IBM, es una implementación serial del conjunto de comandos de la tecnología SCSI-2. SSA no ha sido implementada como un bus sino más bien como una serie de pequeños saltos independientes entre hasta 126 dispositivos autoconfigurables (self-configuring) y conectables en caliente (hot-pluggable).
Uno de los atributos más importantes de SSA es su "Reutilización Espacial", que permite la existencia de más tráfico en un bus e incrementa el ancho de banda. La mayor limitación de la tecnología SSA es el ancho de banda máximo de 20 MBps para cualquier componente de la cadena, pero el bus puede soportar hasta 80 MBps. IBM considera a SSA como una solución universal y económica para almacenamiento local.
En un futuro próximo se espera que SSA duplique su velocidad de 20 MBps por nodo a 40 MBps, y de un ancho de banda total del bus de 80 MBps pase a 160 MBps.











*Fibre Channel
Esta tecnología se basa en el trabajo realizado por el Comité de Canales de Fibra (Fiber-Channel Committee) de la IEEE. Fibre Channel (FC) es una interfaz serial que, a pesar de su nombre (muy parecido a fiber ....), no requiere conexiones de fibra óptica (puede utilizar cable de cobre o fibra óptica, indistintamente). Está basada en comandos SCSI-3, que soportan hasta 126 dispositivos autoconfigurables y conectables en caliente, en conexión tipo margarita. Fibre Channel está evolucionando hacia varias topologías que incluyen Punto a Punto (Point-Point), Estructura Conmutable (Fabric), y Cadena Arbitrada (Arbitrated Loop), con diversas velocidades de transferencia, de hasta 100 MBps simultáneamente en cada dirección (hasta 200 MBps en conexiones análogas a full duplex).
Fibre Channel Punto a Punto establece una conexión entre diferentes dispositivos, proveyendo un ancho de banda total de 100 MBps para cada dispositivo. Sin embargo, solamente un componente puede transmitir o recibir al mismo tiempo sobre una conexión. A pesar de que esto proporciona una mayor velocidad de transmisión que SSA, muchos dispositivos que deseen transmitir o recibir al mismo tiempo deberán esperar que se libere el bus.
Los dispositivos Fibre Channel de Estructura Conmutable son conocidos como elementos que funcionan de modo similar a switches y ruteadores (sobre redes de dispositivos en lugar de redes de computadores). Pueden consistir de uno o varios elementos que posibilitan que puedan introducirse nuevos componentes o nuevas tecnologías, sin perturbar a los nodos en el extremo exterior de la estructura conmutable ni a la estructura previamente existente. En una estructura conmutable cualquier nodo puede hablar con cualquier otro nodo. La estructura conmutable realiza el ruteo apropiado para proveer un servicio par a par (peer-peer).
Fibre Channel en Cadena Arbitrada implementa un algoritmo de distribución equitativa, similar a FDDI, para asegurar que todos los dispositivos tengan igualdad de posibilidad de acceso al bus. Sin embargo, se deben configurar apropiadamente los sistemas para evitar congestión.
Los promotores de Fibre Channel Arbitrated Loop (FC-AL) argumentan que esta tecnología tolera mejor la falla de los discos, y debido a sus lazos cercanos con los canales de fibra puede ser utilizada como una interconexión universal tanto para sistemas como para almacenamiento. Empresas como Adaptec, BusLogic, Hewlett-Packard, Q-Logic, Quantum, NCR y Seagate están detrás de su desarrollo. Los partidarios de la tecnología SSA argumentan que los defectos de FC-AL son su alto costo y su alto consumo de energía. IBM apoya ambas interfaces: SSA para almacenamiento y Fiber Channel para interconexión de sistemas.












martes, 7 de octubre de 2008








TIPOS DE MICROPROCESADORES
Intel Pentium


es una gama de microprocesadores de quinta generación con arquitectura x86 producidos por Intel Corporation.
El primer Pentium se lanzó al mercado el 22 de marzo de 1993, con velocidades iniciales de60 y 66 MHz, 3.100.000 transitores, cache interno de 8 KB para datos y 8 KB para instrucciones; sucediendo al procesador Intel 80486. Intel no lo llamó 586 debido a que no es posible registrar una marca compuesta solamente de números
Pentium también fue conocido por su nombre clave P54C, Se comercializó en velocidades entre 60 y 133 mhz, con velocidad de bus de 50,60 y 66mhz. Las versiones que incluian instrucciones MMX no solo brindaban al usuario un mejor manejo de aplicaciones multimedia ,como por ejemplo, la lectura de peliculas en DVD si no que se ofrecian en velocidades de hasta 200mhz y la mas basica proporcionaba unos nada malos 166mhz de relój.
La aparición de este procesador se llevó a cabo con un movimiento economico impresionante, acabando con la competencia que hasta entonces producia procesadores equivalentes, como es el 80386,el 80486 y sus variaciones o incluso NPUs




Pentium II

es un microprocesador con arquitectura x86 diseñado por Intel, introducido en el mercado el 7 de mayo de 1997. Está basado en una versión modificada del núcleo P6, usado por primera vez en el Intel Pentium Pro.
Los cambios fundamentales respecto a éste último fueron mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste.
El Pentium II se comercializó en versiones que funcionaban a una frecuencia de reloj de entre 166 y 450 MHz. La velocidad de bus era originalmente de 66 MHz, pero en las versiones a partir de los 333 MHz se aumentó a 100 MHz.
Poseía 32 KB de memoria caché de primer nivel repartida en 16 KB para datos y otros 16 KB para instrucciones. La caché de segundo nivel era de 512 KB y trabajaba a la mitad de la frecuencia del procesador, al contrario que en el Pentium Pro, que funcionaba a la misma frecuencia.
Como novedad respecto al resto de procesadores de la época, el Pentium II se presentaba en un encapsulado SEC, con forma de cartucho. El cambio de formato de encapsulado se hizo para mejorar la disipación de calor. Este cartucho se conecta a las placas base de los equipos mediante una ranura Slot 1.
El Pentium II integra 7,5 millones de transistores. El siguiente procesador de la familia Pentium es el Pentium III














El Pentium III

es un microprocesador de arquitectura i686 fabricado por Intel; el cual es una modificación del Pentium Pro. Fue lanzado el 26 de febrero de 1999.
Las primeras versiones eran muy similares al Pentium II, siendo la diferencia más importante la introducción de las instrucciones SSE. Al igual que con el Pentium II, existía una versión Celeron de bajo presupuesto y una versión Xeon para quienes necesitaban de gran poder de cómputo. Esta línea ha sido eventualmente reemplazada por el Pentium 4, aunque la línea Pentium M, para equipos portátiles, esta basada en el Pentium III.
Existen tres versiones de Pentium III: Katmai, Coppermine y Tualatin.



















El Pentium 4


es un microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel. Es el primer microprocesador con un diseño completamente nuevo desde el Pentium Pro de 1995. El Pentium 4 original, denominado Willamette, trabajaba a 1,4 y 1,5 GHz; y fue lanzado en noviembre de 2000.
Para la sorpresa de la industria informática, el Pentium 4 no mejoró el viejo diseño P6 según las dos tradicionales formas para medir el rendimiento: velocidad en el proceso de enteros u operaciones de coma flotante. La estrategia de Intel fue sacrificar el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE. Al igual que la Pentium II y la Pentium III, el Pentium 4 se comercializa en una versión para equipos de bajo presupuesto (Celeron), y una orientada a servidores de gama alta (Xeon).
Las distintas versiones son: Willamette, Northwood, Extreme Edition, Prescott y Cedar Mill.















Celeron

es el nombre que lleva la línea de procesadores de bajo costo de Intel. El objetivo era poder, mediante esta segunda marca, penetrar en los mercados que no podían acceder a los procesadores Pentium, de mayor rendimiento pero también más caros.
Los procesadores Celeron pueden realizar las mismas funciones básicas que otros procesadores, pero su rendimiento es inferior cuando se compara a otros procesadores más costosos. Por ejemplo, los Celeron usualmente tienen menos memoria caché, o tienen algunas funcionalidades avanzadas desactivadas. Estas diferencias tienen un impacto variable en el rendimiento general del procesador. Aunque muchos procesadores Celeron pueden trabajar prácticamente al mismo nivel de otros procesadores, algunas aplicaciones avanzadas (juegos, edición de video, programas de ingeniería, etc.) tal vez no funcionen igual en un Celeron.
El primer Celeron fue lanzado en agosto de 1998, y estaba basado en el Pentium II. Posteriormente, salieron nuevos modelos basados en las tecnologías Pentium III, Pentium 4 e Intel Core 2 Duo. El más reciente esta basado en el Core 2 Duo (Allendale).
En el momento en el que se introdujo el Celeron, preocupaba a Intel la ya mencionada pérdida de cuota de mercado en los sectores de bajo poder adquisitivo (low-end). Para evitar competencia, dejaron de lado el estandarizado Socket 7* y lo reemplazaron por el Slot 1*. Las demás marcas (AMD, Cyrix) tuvieron dificultades de índole técnica y legal para fabricar microprocesadores que se adapten a este conector.
Los procesadores Celeron se dividen en tres grandes clases, las cuales se dividen a su vez en varias subclases. Estas tres clases son:
P6*: Basada en los procesadores Pentium II y Pentium III
Netburst*: Basada en los procesadores Pentium 4
Intel Core* Basados en los procesadores Intel Core 2 Duo



Pentium D


fueron introducidos por Intel en el Spring 2005 Intel Developer Forum. Un chip Pentium D consiste básicamente en 2 procesadores Pentium 4 metidos en un solo encapsulado (2 nucleos Prescott para el core Smithfield y 2 nucleos Cedar Mill para el core Presler) y comunicados a traves del FSB, (en otras palabras es un dual core no monolítico) con un proceso de fabricación inicialmente de 90 nm y en su segunda generación de 65 nm. El nombre en clave del Pentium D antes de su lanzamiento era "Smithfield". Hubo un rumor que decía que estos chips incluían una tecnología DRM (Digital rights management) para hacer posible un sistema de protección anticopia de la mano de Microsoft, lo cual Intel desmintió, si bien aclarando que algunos de sus chipsets si tenían dicha tecnología, pero no en la dimensión que se había planteado.
Existen cinco variantes del Pentium D:
Pentium D 805, a 2,6 GHz (el único Pentium D con FSB de 533 MHz)
Pentium D 820, a 2,8 GHz con FSB de 800 MHz
Pentium D 830, a 3,0 GHz con FSB de 800 MHz
Pentium D 840, a 3,2 GHz con FSB de 800 MHz
Pentium D Extreme Edition, a 3,2 GHz, con Hyper Threading y FSB de 800 MHz.
Nota: no confundir con el Pentium 4 Extreme Edition, a 3,73 GHz, que únicamente posee un único núcleo (Prescott).




Intel Core Duo
es un microprocesador de sexta generación lanzado en enero del 2006 por Intel con dos núcleos de ejecución, optimizado para las aplicaciones de subprocesos múltiples y para multitarea. Puede ejecutar varias aplicaciones exigentes simultáneamente, como juegos con gráficos potentes o programas que requieran muchos cálculos, al mismo tiempo que puede descargar música o analizar su PC con su antivirus en segundo plano, por ejemplo.
Cabe decir que un modelo anterior a Core 2 Duo y posterior a los Pentium D es el Pentium Dual Core, que es un Core 2 Duo con menor frecuencia de bus y memoria cache L2. Es un procesador con dos núcleos de ejecución, que al igual que los Pentium D se diferencia de los Core 2 Duo por que su caché es de sólo 1 mb con un bus frontal de 800 Mhz, mayor al Core Duo. Estos procesadores están orientados para su uso en equipos portátiles aunque de igual forma hay versiones para computadoras de escritorio.
Este microprocesador implementa 2Mb de caché compartida para ambos núcleos más un bus frontal de 667 ó 553 MHz; además implementa un nuevo juego de instrucciones para multimedia (SSE3) y mejoras para las SSE y SSE2. Sin embargo, el desempeño con enteros es ligeramente inferior debido a su caché con mayor latencia. También incluye soporte para la tecnología XD.
Intel Core Duo es el primer microprocesador de Intel usado en las computadoras Apple Macintosh.
Existe también una versión con sólo un nucleo denominada Core Solo.

Core 2 Duo
El micropeocesador de Intel es la continuación de los Pentium D y Core Duo. Su distribución comenzó el 27 de julio de 2006.La marca Core 2 designa a la gama de CPUs comerciales de Intel de 64 bits con doble núcleo y las CPUs 2x2 de cuádruple núcleo MCM[1] (módulo multi chip) con el sistema de instrucción x86-64, basada en la micro arquitectura de núcleo de Intel, derivada del procesador de plataforma portátil de 32-bit de doble núcleo Yonah (Nota: el microchip del Yonah abarcó dos núcleos interconectados, cada uno similar al del Pentium M). Los módulos multi chip (mcm) de CPU de cuádruple núcleo tienen dos dobles núcleos idénticos separados (cpus)-cerca el uno del otro- en un paquete mcm de cuádruple núcleo El Core 2 releva a la marca de fábrica Pentium a un mercado de baja gama y reunificó a los portátiles y las líneas de CPU de sobremesa, que habían sido divididas por las marcas Pentium 4, Pentium D y Pentium M.
La micro arquitectura del Core 2 volvió a velocidades de reloj más bajas y mejoras respecto al uso de los ciclos de reloj y energía disponibles en comparación con su predecesor el Netburst[2] de las CPU de los Pentium 4 y D. La micro arquitectura de núcleo proporciona etapas de decodificación, unidades de ejecución, caches y buses más eficientes reduciendo el consumo de energía de las CPUs Core 2, mientras se incrementa la capacidad de proceso. La marca Core 2 fue introducida el 27 de Julio de 2006 abarcando el Solo (núcleo simple), Duo (doble núcleo), Quad (cuádruple núcleo) y Extreme (CPUs de doble o cuádruple núcleo para entusiastas) durante el 2007.
El Core 2 Duo es un procesador con un pipeline de 14 etapas lo que le permite escalar más en frecuencia que su antecesor directo: el Core, que tenía 12 etapas al igual que el Athlon 64. Tiene, además, un motor de ejecución ancho con tres ALUs, cuatro FPUs, y tres unidades de SSE de 128 bits. Estas dos características hacen que sea el procesador x86 que más instrucciones por ciclo puede lograr.

Intel Core 2 Quad

es una serie de procesadores de Intel con 4 núcleos, lanzados el 2 de Noviembre de 2006, asegurando ser un 65% más rápidos que los Core 2 Duo disponibles en ese entonces. Para poder crear este procesador se tuvo que incluir 2 núcleos Conroe bajo un mismo empaque y comunicarlos mediante el Bus del Sistema, para así totalizar 4 núcleos reales, a diferencia del AMD Phenom X4 que se jacta de ser un procesador monolítico.
Inicialmente estos procesadores fueron producidos con el proceso de manufactura de 65 nanómetros (núcleo Kentsfield), con frecuencias que van desde los 2.4 Ghz hasta los 3 Ghz y con un FSB de entre 1066 y 1333 Mhz y una memoria caché L2 de 8 MB (2x4 MB) Posteriormente, se redujo el proceso productivo a 45 nanómetros, creando el núcleo Yorkfield que, al igual que su antecesor, corresponde a 2 núcleos Wolfdale bajo el mismo empaque. Sus frecuencias van desde los 2.53 Ghz hasta los 3.2 Ghz, su FSB va desde los 1333 hasta los 1600 Mhz y su caché L2 es de 12 MB (2x6 MB). Como medida económica el modelo Q9300 posee solamente 6 MB (2x3 MB) de caché L2 a diferencia de sus pares de mayor frecuencia.
Aunque inicialmente el Core 2 Quad fue lanzado exclusivamente en los mercados desktop y server, debido principalmente a su alto consumo de energía (desde los 95W en ese entonces). Con el paso al proceso productivo de 45 nanómetros y la introducción del núcleo Penryn, Intel tiene planeado introducir un modelo Quad Core para el mercado móvil en conjunto con la plataforma móvil Centrino 2. El modelo, conocido como QX9300, tendría una frecuencia de 2.53 Ghz, un bus de 1066 Mhz y una caché L2 de 12 MB (2x6 MB), con un consumo energético de sólo 45 W, menos de la mitad en comparación a un modelo desktop tradicional.